LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS

THIRD SEMESTER – NOVEMBER 2014

MT 3503 - VECTOR ANALYSIS & ORDINARY DIFF. EQUATIONS

Date : 31/10/2014 Time : 09:00-12:00 Dept. No.

Max.: 100 Marks

<u>PART – A</u>

Answer ALL questions:

- 1. If $\phi(x,y,z) = x^2y + y^2x + z^2$, find $\nabla \phi$ at (1,1,1).
- 2. Show that the vector $3x^2y \bar{i} 4xy^2\bar{j} + 2xyz \bar{k}$ is solenoidal.
- 3. If $\vec{F} = x^2 \vec{\iota} + y^2 \vec{j}$, evaluate $\int \vec{F} \cdot d\vec{r}$ along the line y = x from (0,0) to (1,1).
- 4. Show that $\overline{F} = x^2 \overline{\iota} + y^2 \overline{\jmath} + z^2 \overline{k}$ is a conservative vector field.
- 5. State Green's theorem.
- 6. Show that $\iint_{\mathcal{S}} Curl \overline{F} \cdot \overline{n} \, ds = 0$ where S is any closed surface.
- 7. Solve $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0.$
- 8. Solve $y = (x-a)p p^2$.
- 9. Solve $(D^2 + 4)y = 0$.

10. Find the complimentary function for the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 9y = 10 + \frac{5}{x^2}$.

PART – B

Answer any FIVE questions:

- 11. Find the directional derivative of $\phi = xy + yz + zx$ in the direction of the vector $\overline{i} + \overline{2j} + \overline{k} = \overline{k} + \overline{k}$ at (1,2,0).
- 12. If $\overline{F} = x^2 y \overline{i} + y^2 z \overline{j} + z^2 x \overline{k}$, find Curl Curl \overline{F} .
- 13. Evaluate $\vec{s} \ \vec{F} \cdot \vec{n} \ ds$ where $\vec{F} = yz\overline{i} + zx\overline{j} + xy \ \vec{k}$ and S is that part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant.
- 14. Evaluate by Stokes theorem $\int_{C} e^{x} dx + 2y dy dz$ where C is the curve $x^{2} + y^{2} = 4$; z = 2.
- 15. Solve y($1 p^2$) = 2px.
- 16. Solve $x = p^2 + y$.
- 17. Solve ($D^2 + 5D + 4$) y = $x^2 + 7x + 9$.
- 18. Solve $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} 5y = \cos(\log x)$.

 $(10 \times 2 = 20)$

(5 × ₩= 40)

<u>PART – C</u>

Answer any TWO questions:

- 19. (a) Find the value of the constant a,b,c so that the vector $\vec{F} = (x + 2y + az)\vec{i} + (bx 3y z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational.
 - (b) Find the unit normal to the surface $x^2 y + 2xz^2 = 8$ at (1,0,2).
 - (c) If $F = (3x^2 + 6y)\overline{i} 14yz\overline{j} + 20xz^2\overline{k}$, evaluate $j_C \overline{F} \cdot d\overline{r}$ where C is the straight line joining (0,0,0) to (1,1,1). (6+6+8)
- 20. Verify Green's theorem in the XY plane for $c (3x^2 8y^2)dx + (4y 6xy)dy$ where C is the boundary of the region given by x = 0; y = 0; x + y = 1.
- 21. (a) Solve $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$. (b) Solve $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$. (c) Solve $2p^2 - (x+2y^2)p + xy^2 = 0$. (6+7+7)
- 22. (a) Solve $(D^2 + 4D + 3)y = e^x Sin x + x e^{3x}$.

(b) Solve
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$$
. (10+10)

\$\$\$\$\$\$\$

$(2 \times 20 = 40)$